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Abstract. In this paper we present a systematic method for the generation of multiple time 
scales expansion of the oscillator 

N m  

n = l  m = l  
(d2x/dr2)+u2x = E  1 g,,x"(dx/dr)m 

to any order. The excessive freedom which is inherent in the process is conveniently 
controlled, thus allowing one to generate easily different expansions to the same problem. 
This option was used to study the extent by which different uses of this freedom can affect 
the accuracy of the expansion, concluding that the effect may be significant. The new 
method was applied to the Duffing and the van der Pol oscillators. The complicated 
algebraic computations involved were accomplished by a computer. 

1. Introduction 

A straightforward application of the expansion 

(1.1) 2 N x = ~ ~ + E x ~ + E  XZ+.  . . + E  x N + R N  

to the perturbed harmonic oscillator 

d2x/dt2 + w 2 x  = eg(x, dxldt) (1.2) 
yields a remainder R N  which is of the order of ( E t ) N t 1 ,  a fact which renders this 
procedure useless for times longer than E-' regardless of N. This hindrance stems from 
the appearance of secular terms (terms which are proportional to positive powers of t )  in 
the xi. In order to eliminate the secular terms, one has to introduce extra freedom in the 
expansion (1.1). This can be done by introducing auxiliary variables; expansions using 
this technique are called multivariable expansions (Nayfeh 1973) and their Nth-order 
remainder is estimated by E N c l t ,  

We shall consider here one version of multivariable expansions, namely the multiple 
time scales expansion (MTSE), which is based on the introduction of auxiliary time 
variables scaled by powers of e : 

(1.3) 
(Frieman 1963, Nayfeh 1965,1968, Sandri 1965,1967). This method has been applied 
successfully to various. physical problems, recently including problems in atomic and 
molecular physics (Wong et a1 1976). The application of multivariable expansions in 

N To = t ,  T l = e t  ..., T N = E  t 
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general and the MTSE in particular to the perturbed harmonic oscillator problem has 
been studied already in considerable detail (Nayfeh 1965, 1973, Reiss 1971, Levine 
and Lubot 1975), but until recently no systematic procedure for that application has 
been proposed. This may be due to the fact that multivariable expansions beyond 
second order were seldom attempted, as the amount of algebraic computation becomes 
prohibitively large in higher orders. Nowadays, using a language capable of performing 
symbolic algebraic computations, this tedious task can be accomplished with the help of 
a computer. However, in order to use a computer to generate an MTSE, one has to 
devise a completely systematic procedure for the application of this method. The MTSES 

presented in this article for the Duffing and the van der Pol oscillators were generated by 
a computer program based on the procedure described in the following section. 

Recently, progress in the systematisation of different multivariable expansions was 
reported. Eminhizer et a1 (1976) devised a systematic method to treat a system of 
coupled anharmonic oscillators which has remarkable convergence properties and 
avoids both secular terms and small denominators. Melvin (1977) suggested a different 
method to treat a single anharmonic oscillator. Both methods are limited to conser- 
vative systems, and their application requires arithmetical calculation only; therefore 
those methods can be coded using a conventional computer language like FORTRAN. 

The freedom introduced by the auxiliary variables is in general more than enough to 
eliminate the secular terms; the extra freedom is usually discarded by certain arbitrary 
decisions. Different decisions in handling the extra freedom may lead to different 
expansions with different degrees of accuracy. This subject is discussed in § 4;  however, 
the question of how to use the extra freedom for the benefit of the expansion is still 
open. 

2. A systematic prescription for the application of the MTSE method 

We start by introducing a complex variable z : 
z = exp(-iwr)(dx/dt + iox) 

(this convenient transformation has been used also by Montroll and Helleman (1976)). 
It is easily verified that 

(2.2) 

(2.3) 

(2.4) 

Though our method can be formulated for a general nonlinearity g(x ,  dxldt), we shall 
limit ourselves to the case in which g is a polynomial both in x and dxldt, i.e. 

exp(iwt) dzldt = d2x/dt2 + w z x  

x = (2iw)-'[exp(iwt)z - exp(-iwt)f] 

dx/dt = j(exp(iwt)z + exp(-iwt)f). 

N M  

n = O  m=O 
g(x ,  dxldt) = 1 1 g,,x"(dx/dt)"'. 

With this limitation several simplifications occur, and anyway this is the form of g 
usually encountered in practice. Substituting the right-hand sides of equations (2.3) 
and (2.4) for x and dxldt in g respectively, we obtain a new function h ( z ,  F, exp(iwt)). In 
terms of the new variables, equation (1.2) takes the form 

(2.6) dz/dt = E  exp(-iwr)h(z, 2, exp(iwt)). 
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At this point we introduce the time scales (1.3) and the Nth-order expansion 

Substituting equation (2.7) into equation (2.5) and treating the I;- as independent 
variables, we get 

N 

j,k=O 
azj/aTk = E exp(-iwTo)h(z, F, exp(iwTo)). (2.8) 

The right-hand side of equation (2.8) can be expanded as a power series in E ;  let us 
denote the coefficient of E ,  in it by F,. It is easily verified that 

Fo=O (2.9) 

F, = F,(zo, io,. . . , zm-l, f,,,-l, exp(iwT0)). (2.10) 

Equating the coefficients of equal powers of E on both sides of equation (2.8) v e  obtain 

2 azi/aT,-, = F, 
j = O  

(2.11) 

for m = 0 , l . .  . N. The m = O  equation in this system states that azo/dTo=O, and 
therefore To can be omitted from the list of the arguments of zo in equation (2.7). This 
system of equations, together with the initial conditions, is used to determine the 
expansion coefficients zo . . . zN. It is completely equivalent to the system of equations 
which appear in MTSES in earlier works (Nayfeh 1973), but is formally simpler since the 
second derivatives have been eliminated. This important virtue of the system (2.11) 
simplifies significantly the subsequent treatment. 

Before presenting the procedure for the systematic solution of the system (2.1 1) we 
make some preliminary remarks and introduce some concepts and notations. First, we 
draw attention to the fact that zo plays in the expansion a completely different role from 
the role of the functions z1 . . . zN. This fact is reflected already in the arguments of the 
functions: the arguments of zo are TI  . . . T N  while the arguments of z 1  . . , zN are zo, io 
and exp(iwTo). We shall consider the ‘function zj, j = 1 . . . N as ‘determined’ if its 
dependence on 20, io and exp(iwTo) is established; in particular, it will be considered as 
such even if the dependence of zo on part or all the time scales is still unknown. 

A function off ( To) will be called a generalised power series in exp(iwTo) if it can be 
represented as: 

n 
f(To) = ak exp(ikwT0). (2.12) 

k = - m  

It is easily verified that F, is a generalised power series in exp(iwTo). We define the ‘TO 
average’, (f), of f as 

(f) = 0 0 .  (2.13) 

Finally, we introduce the function G,(zo, io, exp(iwT0)): 

(2.14) 
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The procedure that we propose below for the solution of the system (2.11) is accom- 
plished by N successive steps. In the course of the nth step the function z ,  and the T, 
dependence of z o  are determined, so that after N steps all the functions z,  ( j  = 1 . , , N )  
and the dependence of zo on T1 . . . TN are determined. In view of this, the best way to 
present the procedure is by the method of mathematical induction. 

Let us assume that a process of n - 1 steps has been accomplished, in the course of 
which the functions 2, and the derivatives azo/aT, have been determined for j =  
1 . . . n - 1, in such a manner that the functions z, are a generalised power series in 
exp(iwTo). We can therefore calculate G,, and the nth equation of the system (2.1 1) 
reads: 

(2.15) azo/aT, -+ P, -~  +az,/aTo = G, 

where we introduced the notation 

p,-l = 

Po = 0. 

az a f o  n-1 n - 1  az,= c (3 aro+L -) 
j = 1  aTn-, , = I  azo aT,-, a i o  aT,-, (2.16) 

From the induction assumption it follows that Pn-l is already determined and is a 
generalised power series in exp(iwTo). As we demonstrated, zo is independent of To, so 
that equation (2.15) can be split into the following two equations: 

azo/aT,, = (G, - P,-J 
az,/aTo = G, - P, -~  -azo/aT,. 

(2.17) 

(2.18) 

Since az,/aTO is constructed in such a manner that its To average vanishes, z, is a 
generalised power series in exp(iwTo). The solution of equation (2.18) is: 

z n =  J [G,-P,,-l-*] dTo+yn(zo,fo)  (2.19) a T n  

where yn is an arbitrary function of zo, io. (For the sake of precision we shall choose the 
constant of integration so that ( z ,  - y,) = 0. Once y, is chosen, Z, is determined by 
equation (2.19). The T, dependence of to is determined by equation (2.17), and this 
completes the nth step. Formally our procedure can be summarised as follows. The 
procedure is initialised by the computation of F, (n = 1 . . . N ) .  Then the following 
steps are repeated for n = 1 . . , N :  

(i) Calculate G, (20, Fo, exp(iwT0)) 
(ii) Calculate PnPl (equation (2.16)). 

(iii) Calculate azo/aT, (equation (2.17)). 
(iv) Calculate z ,  (equation (2.18)). 
Collecting the equations of the steps (iii) we get a system of equations for azo/aT, 

( j  = 1 . . . N )  which determines the TI . . . TN dependence of zo. We emphasise the fact 
that the N steps can be carried out without actually solving this system; its solution is a 
completely separate task. Though the equations (2.17) are in general nonlinear, in 
many cases, at least at low orders, they can be solved analytically. Even in cases for 
which no analytical solution is available, equations (2.17) have an advantage over the 
original equation (2.5) in that To does not appear in them. Thus, the fast oscillations are 
eliminated from equations (2.17), a fact which greatly facilitates their numerical 
integration. 

(equation (2.14)). 
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Equations (2.17) are solved successively, starting with n = 1. When the solution is 
completed, two constants of integration are left in zo (we remind the reader that zo is a 
complex quantity). These constants are fixed by the initial conditions. 

As we have seen, in order to accomplish the expansion one has to choose the N 
functions yi ( j  = 1 . . . N ) .  Different choices lead, in general, to,different expansions. 
This situation is analogous to the one encountered in former works in multivariable 
expansions, in which every expansion coefficient is determined up to an additive term 
proportional to the homogeneous solution of equation (1.2). These terms were 
discarded as a rule (Nayfeh 1973, Melvin 1977). One might guess that the analogous 
procedure in the present method would be to choose yi = 0 (the null choice); however, 
this is not the case. It turns out that in order to get expansion coefficients of x free from 
the homogeneous terms one has to choose 

yi = (2iw)-' a z o / a ~ , .  (2.20) 

In §4,  an expansion generated by the null choice is compared together with one 
generated by the choice (2.20) to an exact numerical calculation. The two expansions 
differ significantly, and the one generated by (2.20) is found to be superior. 

It is evident that the choice of the functions y j  affects both the expansion coefficients 
zi, j = 1 . . . N and the time dependence of zo. However, it is worth noticing that the 
n = 1 equation of (2.17) remains invariant. Therefore only the Tl dependence of zo can 
have certain physical interpretation. The dependence of zo on the higher time scales 
reflects mainly the particular choice of the functions yi. 

The quantities which appeared in this section have some general properties, which 
are discussed briefly in Appendix 2. 

3. Example: the Duffing oscillator 

As an illustration we apply the procedure developed in the previous section to the 
Duffing oscillator 

d2x/dt2+w2x =ex3 (3.1) 

using the choice (2.20). The equation (3.1) takes the following form in terms of the 
complex variable z : 

dz/dt = [ ~ / ( 2 i w ) ~ )  exp(-iwt)(exp(iwt)z -e~p(-iwt)Y)~. (3.2) 

We shall carry on the expansion to second order, which means that we shall use the time 
scales To, T l ,  T2 and the expansion 

(3.3) 
2 z =zo+e21+e 2 2 .  

Substituting equation (3.3) into the RHS of equation (3.2) and collecting the coefficients 
of E and e2  we get Fl and F2 respectively: 

(3.4) 

(3.5) 

Fl = (i/8w3)[2:q2 - 2:q4+ 3zof;q2 - 32;f0] 

F2 = (3 i /8w3)[z ;z lq2  - f ~ f 1 4 4 + 2 ~ O f ~ f ~ ~ 2 + f ~ z 1 4 2 -  Z~fi-220foZ1] 

where 4 _= exp(iwTo). 
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We are now ready to execute the prescription given in 0 2, starting with n = 1: 
(i) G1 =F1. 

(ii) Po = 0. 

(iii) azo/aTl = (G1 -Po) = -(3i/8w3)zi.f0 

(iv) z1 = [GI -dzo/aT1l dTo+( l /2 io )  azo/dTl 

= (1/32w4)[2z30q2+f30q4-6zOf~Q2 - 6 ~ % ~ l .  
I 

We now repeat steps (i)-(iv) for n = 2: 
- 4 - 4  - 5 - 6  (i) G2 = ( 3 i / 2 5 6 w 7 ) ( z ~ q 4 - 2 ~ ~ f O q 2 + ~ ~ f ~ - t ~ f ~ 9 2 + 2 z o z o q  -204 ) 

= (9i/256w7)(-2z:ioq2 + 2zi.f:- 2220.f30~7~ + z0f2Q4) 
(iii) az0/a7'2 = (G2-Pl) = (-15i/256w7)z30.fi. 

(iv) t 2 =  (G2-P1-azo/aT2) dTo+(l /2iw) azo/aT2 

2 2 - 3  -2 

I 
= (1/1024ws)(3~;q4+ 24z;foq - 3oZ~.f~-3oZoZoq 

+ 3zof&4 + 2f;q6). 

The solution of equations (3.6) and (3.10) is 

zo = 5 exp[iw (1 - f s  - &s2)t + i4I 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where 5 and 4 are integration constants to be determined by the initial conditions, and 

s = c l 2 / w 4 .  (3.13) 

This completes the second-order MTSE for the Duffing oscillator. Our result agrees 
with previously derived expansions (Nayfeh 1973). The expansion can be carried 
further to higher orders, but the expressions for the expansion coefficients become 
increasingly complex. We found that if the expansion is carried on, the T3 dependence 
of zo is given by 

azo/aT, = -(l23i/8192w1')z:f~. (3.14) 

We see that even such simple expansions as that given above are rather laborious tasks 
for a hand calculation; however, they can be derived easily with a computer. 

4. The effect of different choices of y , ( z o ,  &) on the expansion 

We do not intend to present here a comprehensive discussion of the subject. We shall 
rather restrict ourselves to a demonstration in the particular case of the Duffing 
oscillator. An MTSE of this oscillator with the choice (2.20) was presented in 0 3. Using 
the null choice (y i  = 0) the computer generated the following expansion: 

exp(iot)zo = flal 

E exp(iot)zl= (&s1/32)(2a: + a;3 - 6 ~ ; ' )  

(4.1) 

(4.2) 
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E’ exp(iwt)z2 = (51s:/1024)(3~: + 6 0 ~ :  +2aT5 +21aT3 - 138~;’)  (4.3) 

where 

v1 =exp[iw(l -#sl-&s:)t+ic,iLj 

s1 = 

(4.4) 

(4.5) 

and rl and q51 are the integration constants to be fixed by the initial conditions. The 
MTSE for z to second order generated by the null choice is therefore 

exp(iwt)z‘” = exp(iwt)(zo+ E Z ~  + ~ ~ 2 2 )  

21 2 -3 - 2 5  1 2  + (As1 +imsde1 + 1024s1U1+512slc;51. (4.6) 

Using the formulae presented in Q 3 we obtain the corresponding MTSE generated by the 
choice (2.20): 

exp(iwt)z‘” = c2[(1 - s s 2  - E S ~ ) U ~  - ( s s 2  +=s2)ci1 
3 15 2 3 15 2 

(4.7) 2 -5 + (AS, + &s:)u~ + (&s2 + &s?)u;~ + &s:u$ +&s~u~ ] 

where 

(4.8) 

(4.9) 
Equating the coefficient of uI in equation (4.6) to the coefficient of uz in equation (4.7) 
we get 

(4.10) 51 = 5 2 0  -&ss - M I  
and therefore 

s1 = s2(1-&2) + o(s:). (4.11) 

Substituting this in equation (4.4) we get 

g1 = e x p [ i w ( l - ~ ~ ~ - ~ s : + ~ ( s : ) ) t + i ~ ~ ]  (4.12) 

in agreement with equation (4.8). 
It can also be verified that the corresponding coefficients of the various powers of the 

U in equations (4.7) and (4.6) differ by quantities of the order of s:. We may therefore 
speculate that whenever both expansions converge they converge to the same limit, 
which is the exact solution. Nevertheless, the rates of convergence are considerably 
different. One may reach this conclusion simply by an inspection of the expressions for 
the U in both cases: the coefficient of s: in equation (4.4) is roughly three times bigger 
than the corresponding coefficient of s i  in equation (4.8). This tendency is even more 
pronounced in the next order: The coefficient of s: in the expansion of u1 is found to be 

quantitative picture of this state of affairs, we have plotted in figure 1 both second-order 
expansions together with an exact numerical solution of the equation 

d2x/dt2 +x  = 0 . 3 ~ ~  (4.13) 

for some arbitrary initial conditions. The curves representing the expansion described 
by equations (4.7)-(4.9) and the numeric solution could not be resolved on the scale in 

- if:;, compared with % in the expansion of uz (equation (3.14)). In order to get a 
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1 

X 

Time 

Figure 1. A comparison between an exact numerical integration and two different MTSES of 
equation (5.13). ~ the numerical calculation and the MTSE generated by the choice 
(2.11); - - - - - - the  MTsEgenerated by the null choice. 

which the figure is drawn; evidently, there was no difficulty in resolving these two curves 
from the third one. 

The facts demonstrated in this section show that there is great practical importance 
in an intelligent use of the extra freedom, namely the choice of the functions yP This 
subject was not covered by the present study. 

5. Discussion 

The symbolic computer program for the generation of MTSES has been written in the 
FORMAC language, and it carries out the N steps of the expansion procedure described 
in § 2. The program determines symbolically the functions z1 . . . zN and yields the 
derivatives dzo/aTI . . . azo /aTN.  The existing version does not solve equations (2.17) 
since it turns out that their analytic solution, if at all possible, is either trivial or 
considerably complicated. A computer-generated expansion for the van der Pol 
oscillator is presented in Appendix 1. 

The computer memory volume required for the symbolic computation increases 
considerably with the order N of the expansion and the complexity of g. Therefore, 
although in principle the symbolic computation can be carried on to any order, an actual 
application is limited by the available size of the computer memory. The symbolic 
computations are also very time consuming and therefore very expensive. From these 
considerations the former procedures, whenever applicable, are much superior to ours. 
However, the symbolic program has, among others, one important advantage: it can 
handle functions g(x, dxldt) which contain one or more parameters, for instance 
g = ax2 + bx dxldt. The parameters a and b will appear explicitly in the computer- 
generated expansion coefficients. In addition, the FORMAC compiler supports rational 
arithmetic, and therefore the results are free from rounding errors. 
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Although one-dimensional oscillators like the Duffing and the van der Pol oscil- 
lators have numerous physical applications (for instance, Borenstein and Lamb 1972, 
Nayfeh 1968), there is naturally much greater interest in systems of coupled oscillators 
which may describe the vibration of molecules or mechanical constructions. There is 
also interest in such systems with explicit time dependence to describe forced vibrations 
(Sridhar et a1 1975). In all these systems the occurrence of resonances has to be 
considered explicitly. This phenomenon is absent in oscillators of the type described by 
equation (1.2), and therefore it was not taken into account in the present treatment. A 
straightforward application of the present method to a system with resonances will 
pioduce terms with ‘small denominators’ and subsequently a nonconvergent pertur- 
bation series, Therefore, a generalisation of the present treatment to a system with 
resonances will necessarily have to contain new elements. Work in this direction is in 
progress. 
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Appendix 1. Third-order computer-generated MTSE of the van deiPol oscillator with 
the choice (2.20) 

The equation of motion of the van der Pol oscillator is (Nayfeh 1973) 

d2X/dt2+w2X = ~ ( 1  -x’) dx/dt. (A l . l )  

By inspection of .the computer-generated MTSE for this oscillator it was found that 
exp(iwt)z, can be represented for n = 1 , 2 , 3  as 

n-1 n - m t l  

exp(iwt)zn = 1 w2m-3n 1 amknzO zo exp[iwt(2k - l)]. (A1.2) k t n - m  --ktn-mtl 
m =O k = m - n  

The values of the coefficients aOkn, a lkn  and aZkn  are given in tables 1, 2 and 3 
respectively. 

The function zo is determined by the initial conditions, and the equations 

azO/aTl = -(l/8w2)2iFo+~zo (A1.3) 

aro/aT2 = ( - 7 i / 2 5 6 w 5 ) ) z ~ f ~ + ( ( i / 8 w 3 ) z ~ f o -  ( i /80)~0  (Al.4) 

azo/dT3 = -(37/8 1920’)~28 + (35/ 1024w5)z;Z8 - (1/ 1 6 0 ~ ) ~ ~ z ~ .  (A1.5) 

The solution of equation (A1.3) is discussed by several authors (for instance Nayfeh 
1973). 

Appendix 2. Some general features of the expansion 

’The various quantities which appear in 0 2 have several well-defined and general 
features, which are worth a short discussion. In order to present them, we define the 
concept of the multivariable polynomial (MP) in the arguments u1 . . . UN. A function 
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Table 1. 

k-3 -2 -1 0 1 2 3 4 

1 i/32 - i l l6  i l l6  - i l l6  

3 7i124576 SI8192 -23ij32768 311116384 -37il16384 -31116384 -65il98304 TI18432 
2 -5j1536 -111024 -71512 -71512 11128 -511024 

Table 2. 

y -2 -1 0 1 2 3 
n 

1 i/4 -i/4 
2 -1164 1/16 1/16 -11128 
3 -5i136864 i12048 35i/2048 -35112048 19i14096 -5i16144 

Table 3. 

-1 0 1 2 

2 -1116 -1116 
3 il512 -i/32 i/32 -i/256 

f ( u l  . . , UN) is an MP in u1 . . . U, (f = M P ( U ~  . . . UN)) if it can be presented as 

f =  E a,,,,, ... r,U?u;Z. . . ~2 
r l  a.. , . r~ 

(A2.1) 

where r l  . , , rN are non-negative integers and N 2 1. It is easy to establish that 

h = Mp(exp(iwTo)zo, exp(-ioTo)io . . . exp(iwTo)zN, exp(-iwT0)ZN) 

F = exp(-iwTo)MP(exp(iwTo)zo, exp(-iwTo).fo . . . exp(iwTo)z,v, exp(-iwTo)iN). 

(A2.2) 

(A2.3) 

If we choose the functions y, to be of the form 

Y ,  = ZiMP(IZ0/)2 

then the following relations can be proved: 

z j  = exp(-iwTo)MP(exp(iwTo)zo, exp(-iwTo)io) 

azo/aT, = z ~ M P ( I z ~ / )  2 

(A2.4) 

(A2.5) 

(A2.6) 
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(equation (A2.6) is always valid for j’ = 1, regardless of equation (A2.4); therefore, the 
expansions generated by the choice (2.20) do have the properties of equations (A2.5), 
(A2.6)). 

The form of equation (A2.6) suggests that a polar representation of 20 would be 
useful. In the expansions of the conservative oscillators generated either by the null 
choice or by equation (2.20) it was found that the multivariable polynomial in equation 
(A2.6) has purely imaginary coefficients, and therefore zo is of the form 

z o = l e x p  i akTk+i4) (A2.7) 
N 

( k = l  

where (Yk, C and 4 are real. 
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